skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maslen, Gareth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phlebotomine sand flies are the vectors of leishmaniasis, a neglected tropical disease. High-quality reference genomes are an important tool for understanding the biology and eco-evolutionary dynamics underpinning disease epidemiology. Previous leishmaniasis vector reference sequences were limited by sequencing technologies available at the time and inadequate for high-resolution genomic inquiry. Here, we present updated reference assemblies of two sand flies,Phlebotomus papatasiandLutzomyia longipalpis. These chromosome-level assemblies were generated using an ultra-low input library protocol, PacBio HiFi long reads, and Hi-C technology. The newP. papatasireference has a final assembly span of 351.6 Mb and contig and scaffold N50s of 926 kb and 111.8 Mb, respectively. The newLu. longipalpisreference has a final assembly span of 147.8 Mb and contig and scaffold N50s of 1.09 Mb and 40.6 Mb, respectively. Benchmarking Universal Single-Copy Orthologue (BUSCO) assessments indicated 94.5% and 95.6% complete single copy insecta orthologs forP. papatasiandLu. longipalpis. These improved assemblies will serve as an invaluable resource for future genomic work on phlebotomine sandflies. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract BackgroundThe stable fly,Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. ResultsThis study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. ConclusionsThe combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship ofStomoxysto other blood-feeding (horn flies andGlossina) and non-blood-feeding flies (house flies, medflies,Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. 
    more » « less